Homework Check:

1. 50°
2. 55°
3. 30°
4. 105°
5. 76 in
6. Angles A and B must be right angles, but this would make the sum of the angle measures in the quadrilateral shown greater than 360°.
7. a. rhombus
b. rectangle
c. kite
d. parallelogram
8. $x+55^{\circ}+55^{\circ}=180^{\circ}$ and $40^{\circ}+y+y=180^{\circ}$, so $x=y=70^{\circ}$
ADD NUMBER 8
9. Construct $\overrightarrow{\mathrm{O}}$. Construct a line through point T perpendicular to $\overrightarrow{O T}$

9.2 Investigation on page 458

Central Angle: An angle that has its vertex at the center of the circle

Inscribed Angle: An angle that has its vertex on the circle and its sides are chords

Chord Central Angles Conjecture: if two chords in a circle are congruent, then they determine two central angles that are congruent

Chord Arcs Conjecture: if two chords in a circle are congruent, then their intercepted arcs are congruent

Perpendicular to a Chord Conjecture: the perpendicular from the center of a circle to a chord is the bisector of the chord

Chord Distance to Center Conjecture: two congruent chords in a circle are equidistant from the center of the circle

Perpendicular Bisector to a Chord Conjecture: the perpendicular bisector of a chord passes through the center of the circle

Exit Ticket

What's needed to ensure that two arcs have the same size and shape?

